menu   Home Answers Math Games Free Resources Contact Me  
Mar
26

Math Patterns to Investigate!

Some people say mathematics is the science of patterns which I think is a pretty accurate description. Not only do patterns take on many forms, but they occur in every part of mathematics. But then again patterns occur in other disciplines as well. They can be sequential, spatial, temporal, and even linguistic.

Recognizing number patterns is an important problem-solving skill. If you recognize a pattern when looking systematically at specific examples, that pattern can then be used to make things easier when needing a solution to a problem.

Mathematics is especially useful when it helps you to predict or make educated guesses, thus we are able to make many common assumptions based on reoccurring patterns. Let’s look at our first pattern below to see what we can discover.

What can you say about the multiplicand? (the number that is or is to be multiplied by another. In the problem 8 × 32, the multiplicand is 32.) Did you notice it is multiples of 9? What number is missing in the multiplier?
 
Now look at the product or answer. That’s an easy pattern to see! Use a calculator to find out what would happen if you multiplied 12,345,679 by 90, by 99 or by 108? Does another pattern develop or does the pattern end?
 
Here is a similar pattern that uses the multiples of 9. How is the multiplier in this pattern different from the ones in the problems above? Look at the first digit of each answer (it is highlighted). Notice how it increases by 1 each time. Now, observe the last digit of each answer. What pattern do you see there? Using a calculator, determine if the pattern continues or ends.
Recognizing, deciphering and understanding patterns are essential for several reasons. First, it aids in the development of problem solving skills. Secondly, patterns provide a clear understanding of mathematical relationships. Next, the knowledge of patterns is very helpful when transferred into other fields of study such as science or predicting the weather. But more importantly, understanding patterns provides the basis for comprehending Algebra since a major component of solving algebraic problems

is data analysis which, in turn, is related to the understanding of patterns. Without being able to recognize the development of patterns, the ability to be proficient in Algebra will be limited.

So everywhere you go today, look for patterns. Then think about how that pattern is related to mathematics. Better yet, share the pattern you see by making a comment on this blog posting.

$3.25
---------------------------------------------------------------

Check out the resource Pattern Sticks. It might be something you will want to use in your classroom.
Mar
19

A Negative number times a Negative Number Equals a Positive Number? Are You Kidding?

Have you ever wondered why a negative number times a negative number equals a positive number? As my mathphobic daughter would say, "No, Mom. Math is something I never think about!" Well, for all of us who tend to be left brained people, the question can be answered by using a pattern. After all, all math is based on patterns!



Let's examine 4 x -2 which means four sets of -2. Using the number line above, start at zero and move left by twos, four times. Voila! The answer is -8. Locate -8 on the number line above.

Now try 3 x -2. Again, begin at zero on the number line, but this time move left by twos, three times. Ta-dah! We arrive at -6. Therefore, 3 x -2 = -6.

On the left is what the mathematical sequence looks like. Moving down the sequence, observe that the farthest left hand column decreases by one each time, while the -2 remains constant. Simultaneously, the right hand answer column increases by 2 each time. Therefore, based on this mathematical pattern, we can conclude that a negative number times a negative number equals a positive number!!!!

Isn't Mathematics Amazing?


Mar
12

Myths and Fun Facts about St. Patrick's Day

March 17th is St. Patrick’s Day; so, for fun, let’s explore some of the
myths surrounding this Irish holiday as well as a few fun facts.

Myths

1) St. Patrick was born in Ireland. Here is a surprise; St. Patrick isn’t Irish at all! He was really born in Britain, where as a teen, he was captured, sold into slavery, and shipped to Ireland.

2) St. Patrick drove all of the snakes out of Ireland. It’s
true there are none living in Ireland today, but according to scientists, none every did. You can’t chase something away that isn't there in the first place!

3) Since the leaves of a shamrock form a triad (a group of three), St. Patrick used it to describe the Trinity, the Father, the Son, and the Holy Spirit so that people could understand the Three in One. However, there is nothing in any literature or history to support this idea although it does make a great object lesson.

4) Legend says each of the four leaves of the clover means something. The first leaf is for hope; the second for faith; the third for love and the fourth leaf is for luck. Someone came up with this, but since a clover is just a plant, the leaves mean absolutely nothing.

5) Kissing the Blarney Stone will give you the eloquent power of winning or convincing talk. Once upon a time, visitors to this stone had to be held by the ankles and lowered head first over the wall surrounding the Blarney Stone to kiss it. Those attempting this were lucky not to receive the kiss of death.

Fun Facts

1) The tradition of wearing green originally was to promote Ireland otherwise known as "The Green Isle." After the British invasion of Ireland, few people wore green because it meant death. It would be like wearing red, white, and blue in the Middle East today. When the Irish immigrated to the U.S. because of the potato famine, few were accepted and most were scorned because of their Catholic beliefs. For fear of being ridiculed and mocked only a small number would wear green on St. Patrick’s Day. Those who didn't adorn green were pinched for their lack of Irish pride. This “pinching” tradition continues today.

2) Did you know that in 1962, Chicago, Illinois began dying the Chicago River green, using a vegetable dye? An environmentally safe dye is used in amounts that keep the river festively green for about four to five hours.

3) The Irish flag is green, white, and orange. The green represents the people of southern Ireland, and orange signifies the people of the north. White is the symbol of peace that brings the two groups together as a nation. 

4) A famous Irish dish is cabbage and corned beef which I love to eat!

It is estimated that there are about 10,000 regular three-leaf clovers for every one lucky four-leaf clover you might find. Those aren’t very good mathematical odds whether you are Irish or not!

Want some St. Patrick's Day activities for your classroom? 
$1.85
Check out these three resources.
Feb
26

Finding the Greatest Common Factor and Least Common Multiple

The most common method to find the greatest common factor (GCF) is to list all of the factors of each number, then list the common factors and choose the largest one.  Example: Find the GCF of 36 and 54.

1) The factors of 36 are: 1, 2, 3, 4, 6, 9, 12, 18, and 36.

2) The factors of 54 are: 1, 2, 3, 6, 9, 18, 27, and 54.

Therefore, the common factor(s) of 36 and 54 are: 1, 2, 3, 6, 9, 18.  Although the numbers in bold are all common factors of 36 and 54, 18 is the greatest common factor.

To find the lowest common multiple (LCM), students are asked to list all of the factors of the given numbers. Let's say the numbers are 9 and 12.  

1) The multiples of 9 are: 9, 18, 27, 36, 45, 54.

2) The multiples of 12 are: 12, 24,  36, 48, 60.

As seen above, the least common multiple for these two numbers is 36.  

We often instruct our students to first list the prime factors, then multiply the common prime factors to find the GCF. Often times, if just this rule is given, students become lost in the process. Utilizing a visual can achieve an understanding of any concept better than just a rule. A two circle Venn Diagram is such a visual and will allow students to follow the process as well as to understand the connection between each step. For example: Let’s suppose we have the numbers 18 and 12.

1) Using factor trees, the students list all the factors of each number.


2) Now they place all the common factors in the intersection of the two circles. In this case, it would be the numbers 2 and 3.

3) Now the students place the remaining factors in the correct big circle(s).

4) That leaves the 18 with a 3 all by itself in the big circle. The 12 has just a 2 in the big circle.

5) The intersection is the GCF; therefore, multiply 2 × 3 to find the GCF of  6.


6) To find the LCM, multiply the number(s) in the first big circle by the GCF (numbers in the intersection) times the number (s) in the second big circle.

3 × GCF × 2 = 3 × 6 × 2 = 36. The LCM is 36.

This is an effective method to use when teaching how to reduce fractions,

$4.75
I have turned this method into a resource for Teachers Pay Teachers. It is 16 pages and begins with defining the words factor, greatest common factor and least common multiple. What a factor tree is and how to construct and use a Venn Diagram as a graphic organizer is shown. Step-by-step examples are given as well as student practice pages. How to use a three circle Venn Diagram when given three different numbers is explained. Two pages of blank pages Venn Diagrams are included for classroom practice. To learn more, just click on the price under the resource cover on your right. A free version is also available.